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EIC Considerations Af89,[3~09m‘?

Luminosity
- up to 1034
- expect ~1-2 interactions per event
Pileup should not be an issue, still need to identify primary vertex
Bunch crossing ~10 ns
Fast readout or time stamp to identify bunch crossing for an event

Vertexing
Hadron beam spot B =5 cm

Particle identification
- time of flight
- dE/dx

Radiation damage
Max 1 x 10" 1 MeV n,/cm?
- Assuming ~1% of worst dose at HL-LHC
* To be confirmed

Material Budget
Keep as low as possible



Fast Timing Silicon Detectors Argemso‘,.e

Proposal:

4D Tracking Detectors:
Monolithic Fast Timing Silicon Detectors

- Silicon already has small pixels (10-50 um) for high spatial resolution
- Add timing resolution —
better than bunch crossing
For vertex and track reconstruction
For particle ID
—
MAPS may reduce cost and radiation length

Currently under investigation by
= | Italian groups (INFN, Trento,
Torino, ...), London, and UC Santa
Cruz

5D Detector: x, y, z, time, energy
- Add as an option for an EM calorimeter

Never done before
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Timing for Particle ID

Particle ID:
Expected energy range of charged
particles is up to 10 GeV
Using the time of flight, pion, kaon, and
protons can be identified due to mass
differences for a given momentum
Kaon-pion separation requires
resolutions on the order of 10 ps at 10
GeV
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Timing for Particle ID Argonne T
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Timing for Track Reconstruction

Particles from the struck parton -> Jet substructure
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Ultra Fast Silicon Detectors Argm(\g:?

How do we achieve fast timing on the order of 10 ps?

- Current traditional silicon technologies have rise time ~1-10 ns determined by the drift
velocity in an electric field

1) Faster speeds achieved by reducing the length e-h pairs travel -> Thin Sensors

Thin detector d %

I(t)

(_Thick detector D %

v I——

. . : 1
f[lel (t)+1h(t)] dt = q 1 X q H Current of one electron-hole pair

\./
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Ultra Fast Silicon Detectors Argonne ¥

How do we achieve fast timing on the order of 10 ps?

2) Create an avalanche region to achieve larger gains

Create large potential
dV/dt > 300 kV/cm gradient by applying a region

of high doping concentration
\ °° N, > 10® /cm3

Incoming

charged particle Q
0 0

Gain factor ~ >10x more charge observed
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Low Gain Amplitying Detectors (LGAD) Afgonneo
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LGAD

- amplification region, ~5 um thick
- thin layer of Boron or Gallium
- modifies the effective doping
concentration profile -> electric field
profile to create high field gradient

- Radiation tolerance shown up to 10*n,,/cm?
* not as tolerant as traditional silicon due
to the high reactivity of the accelerant
layer 10" . . . :

—
o
-
el

)

.

°-
_:

——Phosphorus
Boron i
—Net Doping

-
o
S
amd

-
o
-
-

Doping Concentration (cm”

Depth (um)

P-type layer:Different Boron do

P-type substrate: p = 5-15 kQ-cm

*
P+ anode

July 7, 2016 Jessica Metcalfe Sadrozinski, CPAD Meeting, Arlington 2015



Fast Timing Silicon Detectors

Silicon Detector R&D for EIC:
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Time resolution (in ideal lab conditions) approaching 10 ps
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Fast Timing Silicon Detectors Af89,.r1090.,.‘?

Limiting Factors:

Shot Noise
Main factor is the leakage current in the bulk
Multiplication region also adds to the noise due to stochastic nature
+ Signal enhancement from gain increases more slowly (G) than the noise increase (VG?*)
due to the gain factor limiting the overall effectiveness of increasing the gain on the S/N
ratio -> limits gain factor, G < 20

Non-uniform field profile
Reduces the amount of peak charge collected
Distorts collected signal based on where incident particle strikes

-> Thin, square geometry electrodes and high resistivity bulk for uniform electric field profile
-> High field for maximal drift velocity

-> low capacitance to minimize noise

-> small volumes to minimize leakage current and Shot noise

Answer: CMOS Monolithic Active Pixel Sensors (MAPS)
Reduce effective capacitance -> noise
Provide on-pixel amplification -> tolerate lower charge amplitude -> can go thinner



HVCMOS MAPS Arggmg:?

HVCMOS MAPS
(high voltage complimentary metal oxide semiconductor monolithic active pixel sensor)
- Less expensive by x2 than traditional silicon sensors
" Integrated sensor + signal amplification
- Use commercially available CMOS processing with a few modifications
- Deep n-well to isolate on-pixel electronics
- high resistivity substrates for high voltage without breakdown
 Timing is currently ~1 ns
 Apply gain layer in HV CMOS to achieve 10 ps timing? -> never done before
- investigate the possibility with simulations
- Can use lessons learned from LGAD
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4D Silicon Tracking Detector Design Targets

Tracker EM calorimeter Best achieved

Pixel size 20-50 um 1cm 4
Time resolution 10 ps 10-30 ps 50 ps
Radiation tolerance (N, /cm?)  1x10%™ (?) 1x10% 1x10%
Monolithic design yes yes no

o Target values to be confirmed with simulations included in this proposal
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Proposed Work: Year 1
Simulation intensive

1) Detector simulations

- Verify target requirements for timing, pixel size, radiation dose
Investigate timing impacts on physics performance
Use the software framework for the SiD detector
- Sergei Chekanov @ ANL is an expert and will supervise student/postdoc
- Submitted separate proposal for (complimentary) simulation work

Benefits of timing
- Vertex reconstruction
 Track reconstruction
Particle ID
- As an EM calorimeter
In a forward detector



Fast Timing Silicon Detectors Af89,9~09w‘?

Proposed work: Year 1

2) Sensor Simulation

- Simulate the LGAD sensor using Sylvaco TCAD and/or WeightField2.0 (current software
used for LGAD simulations)
- Custom geometries
- Specify different materials, non-uniformities
radiation effects
Response of an incident particle
Drift current generation
Diffusion current
Response to radiation damage
Electronics -> key to incorporate MAPS design
Expertise at Argonne in the APS division
- Agreed to share knowledge and Sylvaco license



Fast Timing Silicon Detectors Af89,[3~09m‘?

Proposed work: Year 1

3) Sensor Design
- Identify challenges and methods to implement a MAPS design
- Establish collaboration with a designer, TBD
- ldentify fabrication site that may be able to implement the parameters we need
- CMOS process
- High resistivity substrate
- Doping for the gain layer



Fast Timing Silicon Detectors Afgonneé
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Proposed work: Year 1

3) LGAD Sensor Testing
» Collaborate with UC Santa Cruz to learn to test their devices
- Set up DAQ chain, most likely SAMPIX
Participate in test beams (travel funds)
Probe station measurements
IV, CV
Laser and/or radioactive source measurements to induce signal charge
- Charge collection efficiency
- Transient Current Technique for estimating the effective doping concentration
- Year 1 and 2: Establish procedures for microscopic analysis
Leverage experience in Material Science (and Nano Technology divisions)
- Scanning laser microscopy
- Spectroscopic techniques

Effective doping concentration, types of defects, trapping centers, resistivity,
mobility, etc.

- Support to integrate LGAD to test stand and for MSD expertise is wrapped into the
electrical engineer (EE) and mechanical engineer (ME) support at ~ 5 weeks each



Fast Timing Silicon Detectors

Plan Summary:

Arg
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grad Sensor | TCAD |Simulation| Material
Pl |postdoc|student| EE | ME |designer|expert| expert expert
Year 1
evaluate the impact of 4D detector
Detector Simulation |on physics performance using fast/full simulation v v v
define target timing resolution v 4 v
4D Sensor Simulation [TCAD simulation of monolithic LGAD device v v v
design 4D sensor concept for target timing resolution
4D Sensor Design (expected 10-30 ps) v v v v
4D Sensor Testing develop laboratory test stand v v v v v v
gain experience with existing LGAD devices v v v
Year 2
4D Sensor Design implement design concept to target timing 4 4 v
4D Sensor Fabrication| join multi-project wafer run for production v 4 v
4D Sensor Testing laboratory test stand characterization measurements | ¢/ v 4 v v
Year 3
4D Sensor Testing irradiate and test 4D sensor samples v v v v v
perform test beam measurements with the 4D sensors| ¢/ v v v v
assess potential of the technology to meet design
4D Benchmarks targets for EIC v v v
define main technological challenges v v v
propose solutions v v v
4D Sensor Design
(Optional) implement solutions in new design v v
July 7, 2016 Jessica Metcalfe 18




Fast Timing Silicon Detectors

Budget
- All items represent fully loaded cost

Argggpq‘)
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Year 2 Year 3

postdoc (50%) 65 65
graduate student 20 20
electrical engineer 10 10
mechanical engineer 10 10
sensor design 50

multi-project wafer run 50

materials and supplies 10 20
travel 5 15
TOTAL 220 140
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4D: Fast Timing Silicon Detectors Afgonneé
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Summary:

- 4D detectors are a novel, but growing, area in silicon detectors
- Ambitious program to use fast timing silicon detectors in the EIC
- Now is the time to explore technological advances

Proposal aims to determine whether Ultra Fast Silicon Detectors are worth investing
in for the EIC

- Clearly identify design targets

Establish the physics benefit from timing info
 Simulate current LGAD sensors
- Draw a roadmap toward Ultra Fast Silicon MAPS



4D Silicon
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Timing for Vertexing Afg%!.?ﬁﬁ

Timing precision
- Vertex identification in forward regions with timing is possible
- Time of flight to detector to identify vertex
Example for a detector at 3.5 min z from IP

Timing Precision
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=> Timing on the order of 10 ps for particle ID, vertexing, and tracking
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4D Silicon Argems—.ﬁ

Particles Associated with Initial lon

beam electron (or low Q?)

From Rik Yoshida’s talk yesterday
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Reminder of Silicon Detector Operation:
‘Diode with p-n junction
- Apply bias voltage to create a region of stable space charge and linear electric field

* this region is the depletion region or active area of the sensor

‘MIP particle creates electron hole pairs
- drift to strip implants and backplane

- signal is read out by Front-End electronics
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4D Silicon Argemsﬁ

Cathode
4 Ring
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Region
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Nicolo Cartiglia CERN EP Detector Seminar 9/26/2014
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How do we achieve fast timing on the order of 10 ps?

- Current traditional silicon technologies have rise time ~1-10 ns determined by the drift
velocity in an electric field

- Faster speeds achieved by reducing the length e-h pairs travel -> Thin Sensors

- Create an avalanche region

Thin detector

I(f)

Thick detector

1
d,

Jli,0+H,0ldt=q  jocq
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MSD: Scanning Laser Microscopy Argonne
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A

SPATIALLY RESOLVED CHARACTERIZATION OF HgCdTe MATERIALS AND
Argonne DEVICES BY SCANNING LASER MICROSCOPY

-Non-destructive testing at various stages of device processing.
-Distribution and identification of electrically active defects
(inclusions, strain, damage, twin bound., bandgap and doping
variations, dislocation clusters, precipitates , stacking faults)

[ Laser beam induced current (LBIC) mode [

Electron-hole pairs generated at the point of illumination are separated by the
. A i builtin electrical field of regions in the vicinity of the incident light.

Voltage between points A and B
Vap=@(r1)-9(rz)=Qql/2nee (c0sO,/ry-c0s8,/r;)

+/-Qeff - total chargos of separatod oleciron-halo pairs

|_Spatial distribution of LBIC for p-n_junction |

Laser
beam

LASER BEAM B

TEMPERATURE DEPENDANCE OF LBIC
for MCT epitaxial film

T=300K T=215K T=180K

I, [ T=110K

Different electrically active areas of the film can be found with temp e LBIC
Argonne National Laboratory is a
U.S. Department of Energy THE UNIVERSITY OF P25 Office of
laboratory managed by The CHICAGO >4 Science
University of Chicago o o0 oy
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